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Abstract

Human motion capture is critical for applications like
VR/AR, gaming, and motion detection, requiring accuracy,
convenience, and user comfort. Traditional methods, like
marker-based optical systems, offer accuracy but lack conve-
nience and comfort. Inertial Measurement Units (IMUs) pro-
vide a solution, but their dense placement on the body is cum-
bersome. This work introduces ProSIP, a sparse IMU-based
approach using only six IMUs for motion capture. ProSIP
uses a probabilistic modeling approach inspired by Varia-
tional Autoencoders to address the ambiguity that sparse IMU
input might match different body motions. The core idea of
ProSIP is to align the representation between sparse IMU
data and full-body motion, which thus can significantly re-
duce ambiguity. As verified on DIP-IMU and TotalCapture
datasets, ProSIP can accurately capture complex motions,
such as ‘sitting and grasping’.

Introduction
Human motion capture, which aims to capture 3D hu-
man movements, is crucial for many applications, such as
VR/AR (Vidal et al. 2018), gaming (Stoeve et al. 2021), and
motion detection (Alarfaj, Qian, and Liu 2021). These ap-
plications impose three requirements on human motion cap-
ture: (1) it must accurately capture 3D body movement, (2)
it should be flexible, enabling capture anywhere, and (3) it
must be nonintrusive for users.

In Fig. 1, we have a brief illustration of the motion cap-
ture system that is commonly used. The most accurate way
to capture human motion is through marker-based opti-
cal motion capture systems like Vicon (vic 2014). How-
ever, these systems are limited to controlled studios where
users must wear special clothing and attach multiple mark-
ers to their clothing. Marker-less multi-camera systems (Ko-
cabas, Karagoz, and Akbas 2019) offer decent accuracy, but
they require camera calibration, time synchronization, and
are not easily portable. Single-camera motion capture sys-
tems (Guan et al. 2021; Bogo et al. 2016; Kanazawa et al.
2018) are more flexible and widely applicable, yet they
still lack accuracy. Most importantly, vision-based systems,
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Figure 1: Comparisons between vision-based and IMU-
based motion capture systems.

whether optical or multi-/single-camera motion capture sys-
tems, perform poorly when visibility is limited due to occlu-
sion, dim light, or motion blur. By contrast, mounting iner-
tial measurement units (IMUs) directly on the user’s body
overcomes the need for line-of-sight. IMUs can capture the
orientation and acceleration of limbs, which makes them
ideal for capturing body movements. Commercial IMU-
based motion capture systems (Schepers et al. 2018) place
multiple IMUs on each limb to comprehensively capture the
whole body’s movements. However, this dense placement
of IMUs (usually more than 17) is inflexible and results in
a poor user experience because of the need for tight-fitting
and unnonintrusive clothing.

Some recent works (Marcard et al. 2017; Huang et al.
2018) have proposed the task of sparse inertial poser,
which only binds the IMU at six key points, including the
lower leg, wrist, head, and pelvis, to realize accurate, flexi-
ble, and nonintrusive motion capture. Reducing the number
of IMUs required for motion capture technology makes it
more practical, but tracking a few limbs introduces ambigu-
ity in the inference process, called one-to-many mapping



ambiguity: a single segment of IMU data can correspond
to multiple possible 3D motions. Existing works (Marcard
et al. 2017; Huang et al. 2018; Yi, Zhou, and Xu 2021) use
the temporal context of sparse IMU data to reduce ambigu-
ity, but this approach is not effective for complex actions.
The reason is that sparse IMU data cannot fully describe
body movement, even when fed into the network temporally.

The main focus of this work is to address the problem of
one-to-many mapping ambiguity in sparse inertial motion
inference caused by input data sparsity. To reduce this ambi-
guity, we propose a probabilistic modeling paradigm called
ProSIP. The key to reducing ambiguity in sparse human mo-
tion estimation is to minimize the difference between the
representation of sparse IMU data and that of full-body mo-
tion. To do this, we draw inspiration from the Variational
Autoencoder (VAE) and use ProSIP to estimate the prior
distribution of full-body motion representations based on
sparse IMU data. We then estimate the posterior distribution
of motion using actual full-body motion data (such as SMPL
posture parameters) as input. Finally, we minimize the dis-
tance between the two distributions to achieve representa-
tion alignment between sparse IMU data and full-body mo-
tion. This method differs from traditional VAEs in that the
prior distribution changes with the IMU data, allowing for
more accurate modeling of real-world dynamics. We evalu-
ated ProSIP on two benchmarks: the DIP-IMU dataset and
the TotalCapture dataset. The results show that ProSIP con-
sistently outperforms existing approaches and demonstrates
the effectiveness of representation alignment.

Related Work

Inertial Motion Capture. Attaching an Inertial Measure-
ment Unit (IMU) to a limb can capture the acceleration and
direction of that limb’s movement (Foxlin 1996; Bachmann
et al. 2001; Roetenberg et al. 2005; Del Rosario et al. 2018;
Vitali, McGinnis, and Perkins 2020). However, commercial
inertial motion capture systems like Xsens (Schepers et al.
2018) use multiple IMUs to track the user’s full-body move-
ment. This can be intrusive, so reducing the number of IMUs
is preferable. However, sparse IMUs make reconstructing
human posture challenging. Early methods (Slyper and Hod-
gins 2008; Tautges et al. 2011; Riaz et al. 2015; Schwarz,
Mateus, and Navab 2009) relied on a Lazy Learning strat-
egy (Aha 1997) to retrieve the most similar action from a
human motion database based on the similarity of accelera-
tion as the prediction result, which limited the accuracy of
the motion capture effects. Recent research (Marcard et al.
2017; Huang et al. 2018; Yi, Zhou, and Xu 2021; Jiang et al.
2022) has demonstrated that better human motion capture
can be achieved by inputting both acceleration and direction.
However, existing methods ignore the ambiguity of sparse
IMU data and rely solely on data-driven approaches, which
can lead to imprecision inference for untracked limb atti-
tudes. To address this issue, this work proposes a probabilis-
tic modeling paradigm that makes the motion representation
of sparse IMU data closer to the representation of whole-
body motion, resulting in more accurate inference results.

Representation Learning with Generative Models Rep-
resentation learning researches aim to automatically learn
effective data representation for tasks. Early methods rely
on hand-designed features (Lowe 1999; Sivic and Zisserman
2008). Generative models (Goodfellow et al. 2014; Kingma
and Welling 2014) make progress in this field. Variational
Autoencoder (VAE) (Kingma and Welling 2014) is used for
representation learning. It encodes data into latent code and
decodes them to reconstruct the original data. Reconstruc-
tion loss and KL divergence loss ensure the quality of data
reconstruction and continuity of the latent space. VAEs have
been widely used to model data representations, e.g., image
distribution (Higgins et al. 2016; Denton and Fergus 2018)
and skeletal sequence representations (Ling et al. 2020).

Methodology
Similar to previous literature (Huang et al. 2018), the sparse
inertial poser system places six IMUs on the legs, arms,
pelvis, and head, as shown in Fig. 3. The six IMUs capture
and utilize the acceleration a ∈ R3 and orientation R ∈ R3

of each IMU as its fundamental input. The overall input is
defined as Xt = [a1:6

t ,R1:6
t ]. The goal of sparse inertial

poser is to estimate complete body posture Yt ∈ RJ×3,
where J is the number of skeleton joints. The problem is
that many limbs of the body are not directly observable, re-
sulting in one-to-many mappings from the observed sparse
IMU data Xt to Yt.

To tackle the one-to-many mapping ambiguity in the
sparse inertial poser, we propose a probabilistic modeling
paradigm, named ProSIP. ProSIP maps X and Y to the mo-
tion distribution space for representation, and then reduces
the mapping ambiguity by minimizing the distance between
the two representations. The fundamental concept of ProSIP
is that whether the data is in the form of sparse IMU readings
represented by X or a complete body posture represented by
Y , both provide different perspectives of body movement.
Therefore, in the representation space of body movement,
the features of both types of data should be consistent with
each other. Next, we introduce the overall framework and
then describe the training objectives.

Overall Framework Design

The overall framework of ProSIP is shown in Fig. 2,
mainly composed of three modules: (1) Prior Encoding
Module, (2) Posterior Encoding Module, (3) Dynamic De-
coding Module. ProSIP uses zt as the representation of the
motion distribution.

Prior Encoding Module This module takes IMU mea-
surement data Xt as input and estimates the prior distribu-
tion of zt, pϕ(zt|Xt). The formal definition of the encoding
module is:

zt ∼ pϕ(zt|Xt). (1)
The prior encoding module includes an encoder Eϕ that en-
codes IMU data Xt into hidden space, a bidirectional LSTM
Mϕ that captures long-distance temporal dependencies, and
a fully-connected layer Fϕ that outputs the mean µϕ(t) and
variance σϕ(t) of qϕ(zt|Xt,Yt).
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Figure 2: The overall framework of the proposed method. Xt is the IMU measurements, and Yt is the ground-truth annotation
of full body posture.
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Figure 3: Illustration of the IMU placement.

Posterior Encoding Module This module takes human
posture Yt and IMU measurement data Xt as input, and cal-
culates the posterior distribution of zt, qψ(zt|Xt,Yt). Fol-
lowing common practices in variational inference, we model
qψ(zt|Xt,Yt) with a Gaussian distribution N (µψ, σψ). The
formal definition of the representation module is as follows:

zt ∼ qψ(Xt,Yt). (2)

In this module, an encoder Eψ , which maps IMU data Xt

and body posture Yt to hidden space, then a bidirectional
LSTM module Mψ to capture long-distance temporal de-
pendencies, and finally a fully-connected layer Fψ to output
the mean µψ(t) and variance σψ(t) of qψ(zt|Xt,Yt).

Dynamic Decoding Module This module uses IMU mea-
surement data X1:T and hidden variables z1:T as input to

estimate whole-body motion Ŷ1:T . The formal definition is:

Ŷ1:T = pθ(X1:T , z1:T ). (3)

During training, zt is sampled from the posterior distribu-
tion qψ , while during testing, it is drawn from the prior dis-
tribution pϕ. The dynamic module first uses an encoder Eθ
to map X1:T and z1:T to the same hidden space, then uses a
bidirectional LSTM Mθ for temporal feature extraction, and
finally uses a multi-layer perception (MLP) Fθ to estimate
the pose parameters Ŷ1:T of SMPL.

Training Objectives
In order to minimize the mapping ambiguity between sparse
IMU data and whole body motion data, this paper con-
straints the distance between the posterior distribution qψ
and the prior distribution pϕ of zt. Similar to training VAE,
the distance between probability distributions is minimized
by minimizing the following constraint function:

Ldist =
1

T
∥Y1:T − pθ(X1:T , z1:T )∥ (4)

+ λKL
1

T

T∑
t=1

LKL(qψ(zt|Xt,Yt)∥pϕ(zt|Xt)),

(5)

where λKL is the weight of the KL divergence LKL. We use
the reparameterization trick (Kingma and Welling 2014) for
training. In addition, since our task is a regression task rather
than a generative task, we constraint the human motion esti-
mated by the mean µψ of the posterior distribution qψ to be
the same as the actual motion, that is:

Lexp = ∥Y1:T − pθ (µψ(t)) ∥ (6)



Therefore, the final training function of the model is:
Ldist + λexpLexp (7)

where λexp is the weight of Lexp.

Model Implementation Consistent with the previous
work (Huang et al. 2018; Yi, Zhou, and Xu 2021), this pa-
per ignores the rotation of SMPL’s ankles, wrists, soles, and
palms. In the entire framework, the joint rotation of SMPL
and the direction measured by the IMU are both converted
to the coordinate system with the SMPL root node (i.e., the
pelvis, Pelvis) as the origin, expressed as a 3×3 rotation ma-
trix. In the representation module, the encoder Eψ is a fully
connected layer stack with residual connection, and the out-
put feature dimension is 256. The bidirectional LSTM Mψ

is an LSTM with two layers, with an output dimension of
256. The output dimension of the fully connected layer Fψ
is 2048, and the lengths of the mean µψ and variance σψ
are both 1024. The structure of the representation module is
like the representation module, except that the input of the
encoder Eϕ is only the IMU data X ∈ R5×(9+3). For the
dynamic module, Eθ maps the IMU data and zt ∈ R1024

to a feature of length 256. The bidirectional LSTM module
Mθ contains two layers of LSTM, with an output dimension
of 256. The multilayer perceptron is a three-layer fully con-
nected layer with residual connections, outputting SMPL’s
pose parameters Y ∈ R15×9. In the inference stage, this pa-
per uses the mean value of the prior distribution as the input
to the dynamic module to infer the overall posture.

Experiment
Experimental Setup
Dataset Same as the previous methods (Huang et al. 2018;
Yi, Zhou, and Xu 2021), this method trains the model on the
training subset of DIP-IMU and AMASS, and then tests the
model performance on the testing subset of DIP-IMU and
TotalCapture. The introduction of the datasets is as follows:
• DIP-IMU (Huang et al. 2018) is a dataset captured in

real scenarios, collecting IMU data of 10 actors (9 males
and 1 female) wearing Xsens. The total action time is
approximately 90 minutes, including simple actions like
walking, raising hands, squatting, grabbing, etc. DIP-
IMU uses SIP (Marcard et al. 2017) to fit Xsens’s 17 IMU
time-series data to obtain SMPL annotations.

• AMASS (Mahmood et al. 2019) is a synthetic large-
scale human motion dataset. AMASS collects Mocap
raw data in different formats from multiple existing raw
datasets, then obtains SMPL annotations that fit Mocap
data through MoSh (Loper, Mahmood, and Black 2014).
AMASS contains motion data of over 300 actors with
a total time of over 40 hours. As the DIP-IMU dataset
is relatively small, we adopt AMASS to co-train ProSIP.
Specifically, virtual IMU sensors are placed on the SMPL
model to calculate IMU’s direction and acceleration.

• TotalCapture (Trumble et al. 2017) collects multimodal
data of 5 actors in a studio, including IMU data, multi-
view video, and Mocap data of Vicon. All these data have
been synchronized over time. The SMPL annotations are
also obtained by using SIP (Marcard et al. 2017).

Single-stage Training Strategy Taking into account that
the synthesized IMU data on AMASS cannot simulate mea-
surement noises, IMU location drifts, etc. that appear in real
situations, previous methods often used a two-stage method
for training: pre-training on AMASS to obtain a better ini-
tial model, and then finetuning on DIP-IMU to adapt the
model to the real IMU data. This two-stage training method
is very complex and requires a fine adjustment of the train-
ing times to avoid underfitting AMASS to cause the initial-
ization model to not learn enough, or overfitting DIP-IMU
causing a catastrophic forgetting of prior knowledge. For the
problem that two stages are difficult to control the learning
strength, this paper directly trains on DIP-IMU and AMASS
at the same time and controls the problem of overfitting
by controlling the ratio of them in the same batch of data
(Batch). In the experiments, the data of AMASS occupies
80%, and the data of DIP-IMU occupies 20%. The ablation
experiment proves that within a certain range of ratios, the
model’s performance does not fluctuate greatly. The method
uses Adamax (Kingma and Ba 2015) as the optimizer, the
learning rate is set to 0.001, β1 and β2 are 0.9 and 0.999 re-
spectively, and the weight decay coefficient is 0.0001. The
batch size (Batchsize) is set to 128. The weights of the loss
functions LKL and Lexp are 0.001 and 1.0 respectively. This
paper uses the early stopping method (Early Stopping) to
control the training rounds of the model, and the model is
trained for about 10 hours on the 3080 GPU.

Comparison Method and Evaluation Metrics This pa-
per selects DIP (Huang et al. 2018) and TransPose (Yi,
Zhou, and Xu 2021) as comparison methods. DIP is the first
to use deep neural networks to solve the problem of sparse
inertia-based human motion inference, and TransPose is the
best-performing model at that time, using a multi-stage re-
gression framework: firstly regressing the skeletal position
according to the IMU data, and then regressing the body pos-
ture according to the skeletal position. This paper quantita-
tively evaluates the model’s performance from three aspects:

• The predictive accuracy of the joint angle (Joints Angular
Error, JAE), measuring the average rotation error of all
body critical points in the SMPL coordinate system.

• Predictive accuracy of joint positions (Joint Position Er-
ror, JPE), measuring the average positional error of all
body keypoints in the root node coordinate system.

• Predictive accuracy of mesh vertex positions (Vertex Po-
sition Error, VPE), measuring the average positional er-
ror of all vertices on the body mesh in the root node co-
ordinate system. Compared to JPE, VPE can reflect the
accuracy of the skeleton self-spin.

Quantitative Evaluation
Quantitative experiments are conducted with this paper us-
ing the online testing setup, and the results are shown in
Tab. 1. In the online test setting, the test data arrives frame
by frame, which is more in line with most practical ap-
plication scenarios. Consistent with the comparative meth-
ods (Huang et al. 2018; Yi, Zhou, and Xu 2021), this paper
uses 20 frames of historical data, one frame of current data



G
ro

un
d 

Tr
ut

h
Tr

an
sP

os
e

O
ur

s

G
ro

un
d 

Tr
ut

h
Tr

an
sP

os
e

O
ur

s

TotalCaptureDIP-IMU

Figure 4: Qualitative comparisons between our method and TransPose on DIP-IMU and TotalCapture. Both font-view and side-
view results are shown.

Table 1: Quantitative results on DIP-IMU and TotalCapture under the online setting.

DIP-IMU TotalCapture

Method JAE (deg) JPE (cm) VPE (cm) JAE (deg) JPE (cm) VPE (cm)

DIP (Huang et al. 2018) 15.2 (±8.5) 7.3 (±4.2) 9.0 (±5.0) 17.5 (±10.1) 9.6 (±6.0) 11.4 (±6.9)
TransPose (Yi, Zhou, and Xu 2021) 8.9 (±4.8) 6.0 (±3.7) 7.1 (±4.2) 12.9 (±6.2) 6.6 (±3.9) 7.5 (±4.4)
Ours 7.7 (±2.0) 5.3 (±1.7) 6.2 (±1.9) 12.8 (±4.7) 6.6 (±2.5) 7.4 (±3.0)

JAE (deg) JPE (cm) VPE (cm)

Fixed Prior Learned Prior

Figure 5: Learned prior (ours) vs. fixed prior (standard
VAE). Y-axis: ratio of samples (0-1).

and 5 frames of future data. This paper selects DIP (Huang
et al. 2018) and TransPose (Yi, Zhou, and Xu 2021) as the
comparative methods and conducts a quantitative compari-
son on the benchmark test sets DIP-IMU and TotalCapture.
Two observations can be made from Tab. 1: 1. On DIP-IMU,
this method significantly outperforms the comparison meth-
ods in all evaluation indexes, for example, compared with
TransPose (the best performing method currently), the av-
erage JAE of this method is reduced by 1.2 degrees (deg),
the performance is improved by 13.8%, which is a large im-
provement in this field. On TotalCapture, the average error
of this method in all evaluation indexes is close to Trans-
Pose, but the variance of all indexes is much smaller than
that of TransPose, for example, the variance of JAE is re-
duced by 1.5 degrees, which indicates that the stability of
this method is better than that of TransPose, this is a very
important advantage for practical applications. In the two

benchmark test sets, the average error and variance of this
method are far lower than that of DIP. The results of the
quantitative experiment verify the advantages of the infor-
mation enhancement method based on Bayesian posterior
constraint, this method can make the motion representation
obtained from sparse IMU data more similar to the whole
body motion, thereby improving the rationality and accuracy
of the inference results.

Qualitative Evaluation

Qualitative Comparison on DIP-IMU This section first
qualitatively compares this method with TransPose on the
DIP-IMU dataset using the online testing setup, and the ex-
perimental results are as shown in Fig. 4. The first exam-
ple shown is ”sitting and grabbing.” From Figure 4 (top), it
can be observed that TransPose did not correctly predict the
posture of the thigh (no IMU tracking), resulting in its ac-
tion being closer to ”standing and grabbing.” However, this
method is able to accurately infer the posture of the thigh due
to the enhancement of the motion representation of sparse
IMU data with Bayesian posterior constraint. In addition,
from the figure, it can be seen that the arm movement of
TransPose is also not as accurate as this method. The second
example is ”raising and waving both arms”, which is also a
commonly performed action in daily life. From Fig. 4 (bot-
tom), it can be seen that TransPose estimated the posture of
the arm incorrectly, resulting in the action of the hands be-
ing significantly inconsistent with the actual movement. As
observed from the front view and side view, the method of
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Figure 6: Live demo of our method

this paper is very close to the actual movement.

Qualitative Comparison on TotalCapture Then, this
section conducted a qualitative comparison between this
method and TransPose on TotalCapture, and the results are
shown in Fig. 4. As can be seen from the figures (especially
the third column), for skeletons with IMU tracking, Trans-
Pose can accurately predict their posture, but for skeletons
without IMU tracking, such as the upper arm, its results are
significantly worse than this method. This also verifies that,
with the help of Bayesian posterior constraint for represen-
tation enhancement, this method can more accurately infer
human motion on datasets that have not been pre-trained.

Live Demo As shown in Fig. 6, this paper evaluates the
effectiveness of this method in a real environment (based
on an online testing setup). The current benchmark tests
are mainly simple actions, for example, DIP-IMU is mainly
waving hands, lifting legs and walking, and TotalCapture is
also mainly walking and running. In this experiment, this pa-
per selects two actions with a large body movement range,
”playing badminton” and ”weightlifting”, for testing. This
paper uses Xsens’s IMU sensors to collect inertia data, but
it needs to be emphasized that this paper still maintains
the ”sparse tracking” setting, that is, only data from 6 sen-
sors are used. As can be seen from the figure, even for fast
movements (playing badminton) and bending over to pick
up, which can easily cause sensor offset and complex limb
dynamics, this method can still accurately infer the three-
dimensional movement of the body. This again validates the
effectiveness of information-enhanced inference: enhancing
the motion representation of sparse IMU based on Bayesian
posterior constraint can effectively improve the ability of

sparse inertia-based motion capture models to infer real and
complex movements.

Ablation Study
Analysis of the Randomness in the Prior Distribution
As previously mentioned, this paper maps sparse IMU data
to a prior distribution of motion (Gaussian distribution), us-
ing its mean as the input to infer the full-body posture for
the dynamic module. Unlike prediction tasks, inertial human
motion capture is a deterministic regression task where only
one actual scenario occurs. Therefore, excessive randomness
in the prior distribution is not desirable for this study. To ver-
ify the applicability of this method for regression tasks, this
paper conducts random sampling with the prior distribution
and explores its randomness through visualized results. The
results of random sampling are shown in Fig. 7. The first
column displays the actual human postures that occurred,
while the second to sixth columns are the results randomly
sampled from the prior distribution. To better compare the
differences in random results, this paper merges and renders
them in the same coordinate system (as seen in the last col-
umn). An analysis of the results in the last column reveals
that the postures in the randomly sampled outcomes are dis-
tinct from each other, as can be clearly seen in the postures
of the right hand and right leg. However, from the second
to the sixth column, it can be observed that the randomly
sampled results are very close to the actual actions. This in-
dicates that the prior distribution can model the uncertainty
in reasoning inertial human motion with sparse data, while
also ensuring that the outcomes of random sampling do not
significantly differ from each other.

The Impact of Dynamic Prior Fig. 5 compares the on-
line test results on DIP-IMU using two different methods of
constructing the prior distribution. As mentioned before, the
prior distribution dynamically changes with different IMU
data inputs. In contrast, traditional VAE assumes a fixed nor-
mal distribution for the prior, N (0,1). From Fig. 5, it is ob-
servable that after replacing the fixed prior with the dynamic
prior distribution used in this method, the histogram overall
shifts towards reduced error, leading to more accurate esti-
mation of body postures. This is because the fixed prior over-
looks the variations in IMU observations, essentially assum-
ing that all human motions are sampled and mapped from
a normal distribution, which is inconsistent with the char-
acteristics of real-world movements, thereby increasing the
difficulty of learning the distribution of full-body motion. In
contrast, the prior distribution in this method changes ac-
cording to different sparse IMU data, more accurately mod-
eling the distribution of movements in the real world, hence
resulting in smaller errors.

The Impact of DIP-IMU’s Proportion in Training Data
As mentioned earlier, this paper employs a single-stage
training strategy, conducting training simultaneously on
DIP-IMU and AMASS. AMASS is a large synthetic dataset,
crucial for the model to learn the mapping from IMU data
to human posture. DIP-IMU is a real dataset, significantly
smaller in scale compared to AMASS, but it provides noise
interference encountered by IMUs in real scenarios, such
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Figure 7: Analysis of the randomness of prior distributions.
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Figure 8: The impact of different ratio of DIP-IMU in the
training data (Upper Part) and λKL. Evaluations were car-
ried out on both the DIP-IMU test set (green line, left Y-
axis) and TotalCapture (blue line, right Y-axis) in terms of
JAE, JPE, and VPE.

as location drift, electromagnetic environment interference,
etc. Both datasets complement each other, which is also vali-
dated by the experimental results in Fig. 8 (top). From Fig. 8
(Top), we can observe that the error curve exhibits a ”U-
shaped” trend: the model performs poorly when the propor-
tion of DIP is either 0% or 100%, and performs better when
both DIP and AMASS are used in training. Additionally, it
can be seen that between 0.2 and 0.8, the model’s perfor-
mance is relatively similar, indicating that this method is ro-
bust to the relative proportions of the two datasets.

The Impact of λKL The lower part of Fig. 8 shows the
impact of different values of λKL on ProSIP. The results
are reported under the online setting on the DIP-IMU test
set and TotalCapture. From Fig. 8, we can observe that as
λKL decreases, the errors (JAE, JPE, VPE) initially start to

decline, then begin to increase gradually after λKL drops
below 1e− 3. This is because λKL controls the balance be-
tween the reconstruction constraint (the first term of Eq. (5))
and the KL constraint (the second term of Eq. (5)). The goal
of the reconstruction constraint is to enable the model to re-
construct human postures, while the KL constraint is used to
enhance the expressive capability of the motion representa-
tion in sparse IMU data. When λKL is small, the reconstruc-
tion constraint dominates, allowing the model to better re-
construct bones tracked by IMU but failing to accurately in-
fer untracked bones. Conversely, when λKL is large, despite
the posterior constraint for full-body motion, the weaker re-
construction constraint leads to the model’s inability to ef-
fectively learn motion representation from sparse IMU data.
Therefore, it is necessary to adjust the size of λKL so that
the model can simultaneously learn to reconstruct full-body
motion (by the reconstruction constraint) and eliminate am-
biguities in sparse IMU data (by the KL constraint).

Conclusion

Sparse Inertial Poser suffers from mapping ambiguity from
sparse IMUs data to full-body motion. To tackle this prob-
lem, we introduce a Bayesian posterior constraint method
that aligns the distribution of IMU data with that of full-body
motion data, making the IMU data representation closer to
the actual full-body motion. In order to model the dynam-
ics of real motion, the distribution estimated from the IMU
input changes with the data, rather than being fixed. This
method has been tested on authoritative benchmark datasets
DIP-IMU and TotalCapture, and it achieved the best results
at that time in three evaluation metrics: Joint Angle Error
(JAE), Joint Position Error (JPE), and Vertex Position Error
(VPE) of the SMPL model.
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