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Abstract
With the metaverse slowly becoming a reality and given
the rapid pace of developments toward the creation of dig-
ital humans, the need for a principled style editing pipeline
for human faces is bound to increase manifold. We cater
to this need by introducing the Latents2Semantics Autoen-
coder (L2SAE), a Generative Autoencoder model that fa-
cilitates highly localized editing of style attributes of sev-
eral Regions of Interest (ROIs) in face images. The L2SAE
learns separate latent representations for encoded images’
structure and style information. Thus, allowing for structure-
preserving style editing of the chosen ROIs. The encoded
structure representation is a multichannel 2D tensor with
reduced spatial dimensions, which captures both local and
global structure properties. The style representation is a 1D
tensor that captures global style attributes. In our frame-
work, we slice the structure representation to build strong
and disentangled correspondences with different ROIs. Con-
sequentially, style editing of the chosen ROIs amounts to
a simple combination of (a) the ROI-mask generated from
the sliced structure representation and (b) the decoded im-
age with global style changes, generated from the manip-
ulated (using Gaussian noise) global style and unchanged
structure tensor. Style editing sans additional human super-
vision is a significant win over SOTA style editing pipelines
because most existing works require additional human effort
(supervision) post-training for attributing semantic meaning
to style edits. We also do away with iterative-optimization-
based inversion or determining controllable latent directions
post-training, which requires additional computationally ex-
pensive operations. We provide qualitative and quantitative
results for the same over multiple applications, such as se-
lective style editing and swapping using test images sampled
from several datasets.

Introduction
With the rise of online photo-sharing applications, the de-
mand for tools that enable automatic photorealistic ed-
its on face images has seen exponential growth. Moti-
vated by the capability of Generative Adversarial Networks
(GANs) to generate high-resolution and photorealistic im-
ages and transfer the style attributes from an image to an-
other (demonstrated by works like (Karras et al. 2017; Kar-
ras, Laine, and Aila 2018; Karras et al. 2020)),

Figure 1: A high level representation of our ROI-specific
style editing pipeline and its constituents.

several GAN-based approaches (Zhu et al. 2020; Alaluf,
Patashnik, and Cohen-Or 2021a; Nizan and Tal 2020; Wang
et al. 2021; d’Apolito et al. 2021; Nie et al. 2020; Shen
et al. 2020; Patashnik et al. 2021; Härkönen et al. 2020;
Niemeyer and Geiger 2021) have attempted this task. How-
ever, there exists a paucity of methods that can efficiently
perform highly localized, structure-preserving, and photore-
alistic style edits on real images which are in accordance
with the global style scheme. Very recently, a few methods
like (Shi et al. 2022) addressed local style editing of real
images, but their framework is dependent on the highly ex-
pensive iterative optimization-based image-to-latent inver-
sion process (Alaluf, Patashnik, and Cohen-Or 2021b) and
thus inconvenient for real-life applications.

We seek to diminish the aforesaid research gap in this
work. The latent space of Generative Autoencoder (GA)
models can be designed to encode the structure and style
information present in the input image into separate repre-
sentations. Our key insight is that achieving a strong corre-
spondence between a part of the structure representation and
semantic ROIs in a disentangled fashion is pivotal for solv-
ing the problem. To this end, we design a framework where
we slice structure representation such that each slice repre-
sents (gets interpreted as) all the information required by the
decoder to decode each ROI independently. The style repre-
sentation can then be leveraged to affect global style changes
onto the input image, and the sliced structure representation
can be leveraged to produce semantic segmentation masks
for each ROI. Consequentially, obtaining ROI-specific style
edits shall amount to a simple alpha matting task with the



predicted semantic segmentation masks as the matte.
Furthermore, our design is based on Swapping Autoen-

coder (SAE) (Park et al. 2020) that learns a latent rep-
resentation with a neat distinction between structure and
style information of the input image. In contrast to iterative-
optimization-based inversion approaches, our design is sig-
nificantly faster, as it inverts using a single forward pass
and converges to areas of the latent space, which are more
suitable for editing. We demonstrate that our simple yet ef-
fective autoencoder-based approach achieves satisfactory vi-
sual quality while being extremely fast compared to prior art
(Shi et al. 2022) for local style editing of face images. The
contributions of this paper can be summarized as below:

• We employ the SAE’s latent space consisting of the
Structure Tensor and Texture (Style) Vector to perform
localized, structure-preserving, and photorealistic style
edits on real face images, which are all independent of
one another and are in accordance with the global style
scheme of the input image. Our approach does not re-
quire any priors or ground-truth (GT) supervision for the
locally altered images, peripheral models, or additional
data for editing an input image. To our knowledge, ours
is the first work that does so for any Generative Au-
toencoder model; eliminating the need for expensive in-
versions. We provide qualitative results and quantitative
metrics to support our claims.

• We infuse a strong disentanglement with respect to the
structure of semantic ROIs in re-generated images in the
latent space (Structure Tensor) of SAE (Park et al. 2020).
Our model achieves satisfactory visual quality compared
to SOTA while being extremely fast and efficient.

• Localized style editing for a given ROI from an input
image amounts to a simple forward pass with the addi-
tion of noise to the texture (style) latents for achieving
global style edits, followed by a forward pass with ap-
propriate masking (retention of a single non-zero slice
corresponding to the ROI) applied to the structure latents
for predicting ROI specific segmentation masks. Finally,
an alpha matting operation generates the output image.
This eliminates the need for any additional human effort
(supervision) post-training and underscores the applica-
bility of our model to any generic automatic face editing
application.

Method
An overview of our framework is shown in Fig. 1. Our ROI-
specific style editing pipeline consists of two primary net-
works, viz., the Style Manipulation Network (SMN) and
the Semantic Mask Prediction Network (SMPN). Given an
image, the SMN is tasked with generating photorealistic
global style modified images, and the SMPN is responsi-
ble for generating accurate segmentation maps. The Alpha
matting block performs an alpha matting between the input
image and the style modified image using the predicted ROI-
specific segmentation mask as the matte. This results in the
output image’s style attributes being modified only for the
chosen ROI. A key advantage of our method is that it does

not require GT supervision for the locally-modified images
and is prior agnostic. During training, it only needs

Figure 2: A schematic representation of the SAE (Park et al.
2020) inspired SMN and SMPN architectures and training
methodology. The schema used for slicing Ss and for forma-
tion of masked Ssfeaturei

have been annotated in the legend.
l refers to the operation defined by Eq. 1.

the weak supervision of the GT segmentation maps as guid-
ance. The SMN and the SMPN share the same model ar-
chitecture, derived from SAE (Park et al. 2020). The SAE
(Park et al. 2020) is a generative Autoencoder model which
embeds the structure and style information present in input
images (H ×H × 3) into a structure tensor (Ss, having di-
mensions H/16×H/16× 8) and texture vector (St, having
dimensions 1 × 1 × 2048). The latent space S = {Ss, St}
serves as the foundation of our work.
Our primary goal is to manipulate the style of a particular
region in the image. To achieve that, we first aim to build a
correspondence between the latent representation Ss and the
structure of individual regions of interest, namely: hair, skin,
nose, eyes, and (lips + mouth) in the reconstructed image. In
our work, we follow a feature slicing scheme in the latent
space and found it to perform reasonably well in practice.
For each ROI, we first fix a particular set of feature maps of
Ss and mask (setting to zero) all other feature slices. Next,
we train the network to produce an image containing only
the corresponding semantic ROI when the masked Ss is de-
coded together with St.

We use separate network instances for the SMN and the
SMPN. The SMN is a pre-trained SAE (trained on the FFHQ
dataset (Karras, Laine, and Aila 2018)). Whereas, the SMPN
is a separate SAE instance, fine-tuned on the ROI-separated
CelebAMask-HQ dataset comprising 27016 datapoints.

Network Architecture and Losses.
l(Y ′

0 , Y0) = Lrec(Y
′
0 , Y0) + 0.5LGAN, rec(Y

′
0 , Yi)

+0.5LGAN, swap(Y
′
0 , Y0) + 0.5LCooccurGAN(Y

′
0 , Y0)

(1)

The pretrained SAE (Park et al. 2020) is taken such that it
id trained on the FFHQ dataset using the same loss func-
tions as Eq. 1. Given an image, it first generates Ss and St.
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Figure 3: Qualitative results for the prediction of semantic segmentation maps (column 2) by the SMPN and selective style
edits (columns 3 through 7) performed on several ROIs. All selective style editing results were obtained by giving noise vectors
sampled from N(0, 1) as input to the SMN. The color coding used for semantic regions in the segmentation maps is given by;
blue: hair, green: skin, red: nose, orange (approach 1): eyes, orange (approach 2): lips + mouth, grey (approach 1): lips + mouth,
and grey (approach 2): eyes .

Algorithm 1: Inference algorithm
Input: x (input image), ChoiceROI , µstlye−noise

Output: x̂ (ROI-selective style edited image)
1: SMN = SAE(), SMPN ← SAEslicedSs

()
2: noise← µstlye−noise · N(0, 1),
3: slice mask ←MaskChoiceROI

4: Ss1 , St1 = EncoderSMN (x)
5: NoisySt1 = St1 + noise
6: xGloballyNoisy = DecoderSMN (Ss1 , NoisySt1)
7: Ss2 , St2 = EncoderSMPN (x)
8: Srois2 = slice mask · Ss2
9: ROIMask = DecoderSMPN (Srois2 , St2) > 0

10: x̂ = AlphaMatting(x, xGloballyNoisy, ROISemanticMask)
▷ Operation defined by Algorithm 2

Algorithm 2: The alpha matting and blending algorithm
Input: x (input image), m (ROI mask), y (global style

edited image)
Output: x̂ (ROI-selective style edited image)

1: α = m⊛ σ(3, 3) ▷ ⊛ denotes convolution,
σ(i, j) = (1/

√
2π) · e−(i2+j2)/2; i, j ∈ [0, 3)

2: x̂ = (1− α) · x+ α · y
3: x̂ = x̂⊛ σ(3, 3) ▷ ⊛ denotes convolution

Any perturbation in the style tensor St results in global style
manipulation in the reconstructed image.

The SMPN solely focuses on segmenting different ROIs
given the input image. We follow the same architecture and
slicing scheme of the structure latent Ss as elucidated in Fig.
2. For every batch of training data, parameters of the encoder
and decoder (all Siamese decoders share the same parame-
ters) are optimized using the following overall loss:

Loverall =

5∑
i=1

0.2 · l(Y ′
i , Yi) (2)

Overall, the SMN produces an image with a different global
style. The ROI masks, predicted by the SMPN, are used to
allow style changes only in certain semantic regions using

Eyes Hair Nose Lips + Mouth Skin

Style Reference

Figure 4: Selective style swapping across several ROIs. Col-
umn 1 depicts images used as a style reference. Columns 2
through 6 in the top row show input images (structre refer-
ence) for performing style edits. Images in the matrix denote
the outputs for selective swapping (with respect to the ROI
denoted by the column) of style attributes between the cor-
responding input and style reference image, respectively.

alpha blending.

Alpha Matting and Blending Given the input image (x),
the semantic mask for the chosen ROI (m), and the global
style edited image (y). The AlphaMatting() operation
used in Algorithm 1 to obtain the ROI localized style edited
image (x̂) corresponds to the series of steps given by Algo-
rithm 2, where σ(3, 3) denotes a standard 3 × 3 Gaussian
convolution kernel. The Gaussian blurring performed, en-
sures smoothing of edges in the matte and combined image,
respectively.

Training
Training was initiated using the pre-trained weights pro-
vided by (Park et al. 2020), post training on the FFHQ
dataset (Karras, Laine, and Aila 2018). The optimizer and
training loop used were the same as used by (Park et al.
2020). As show in Figure 3, a batch of training data com-
prised of {X,Y1, ..., Y5} where X denotes a batch of input
images and Yi denotes a batch of region specific images, Ri.

The SMPN model was trained on the CelebAMask-HQ
dataset (Lee et al. 2020).
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Figure 5: ROI-wise structure editing. Column 2 depicts the
reconstructed image obtained sans any modification to en-
coded latent. Column 3 shows the structure modifications
obtained upon reconstruction with noise added to ROI-
specific-slices of the encoded latents.

Table 1: Quantitative results for our methods performance
versus SemanticStyleGAN (Shi et al. 2022). We evaluate the
perceptual similarity of edits obtained (FID, LPIPS) and the
time taken to perform one texture edit per ROI.

Method FID ↓ LPIPS ↓ Time Taken (s) ↓
SemanticStyleGAN 0.3072 22.3771 120.602
Approach 2 (Ours) 0.2026 26.6084 0.07

Inference Mechanism
Inferring segmentation maps from the model amounts to
a simple forward pass over the network with appropriate
masking applied to Ss in the latent space, depending upon
the ROI for which the segmentation has to be performed.
Similarly, performing global style edits entails adding noise
to the encoded St followed by decoding it in tandem with
unchanged Ss. The process of performing ROI specific style
edits using our model is encapsulated by Algorithm 1.

Experiments
We present a detailed analysis of our model’s efficacy to-
wards the claims made in this paper. We provide qualita-
tive and quantitative results for our method’s performance
with respect to degree of photorealism, ROI-wise localiza-
tion of edits, and time of computation per edit. The Seman-
ticStyleGAN (Shi et al. 2022) is one of the few recent works
that claim to perform highly localized texture editing of real
images with minimal human supervision post training. We
present a detailed comparative study between our method
and the SemanticStyleGAN (Shi et al. 2022). The subse-
quent subsections elucidate that our method is much faster
while being comparably good at performing ROI-wise edits.
We do not attempt to estimate the amount of additional hu-
man effort (supervision) required by competing methods for
the sake of brevity. Figures 4 and 5 illustrate selective style
swapping and structure editing which are promising appli-
cations of our method.

Dataset and Implementation Details
Our model was trained only on the CelebAMask-HQdataset
(Karras et al. 2018) and was evaluated on 862 images sam-
pled from it. The models were trained on 2 NVIDA GeForce
RTX 3090 GPUs using a batch size of 4, respectively. We
used the optimizer presented by the SAE (Park et al. 2020)
to train our models.

L2SAE versus SOTA
Computation Time for obtaining edits Owing to the
optimization-based pipelines for inverting real images to la-
tents, most SOTA methods such as (Shi et al. 2022) and (Wu,
Lischinski, and Shechtman 2021) require heavy computa-
tions for projecting images onto their latent space. These
methods lack neat disentanglement with respect to seman-
tic ROIs in their latent manifold. Thus, making editing via
inverted latents time consuming. Most of this time is lost in
additional human supervision required for attributing mean-
ing to controllable directions and inferring from latent space
classification models. We ignore the effects of additional hu-
man supervision in our study. Given its disentangled latent
space, our method is much faster than the SOTA in produc-
ing ROI-specific edits. Table 1 shows that our approach is
faster than SOTA by multiple orders of magnitude.

Quality of Style Edits Fig. 3 highlights the qualitative re-
sults in terms of segmentation maps predicted by the SMPN
and the ROI-specific style edits obtained in tandem with the
SMN. Fig. 6 (Appendix-A) shows ROI-wise style edits ob-
tained by our mehtod in contrast with those obtained by
the SemanticStyleGAN (Shi et al. 2022). It is evident that
the SemanticStyleGAN compromises with structure reten-
tion from input images in its texture editing pipeline. Since,
our method emaerges from the SAE (Park et al. 2020), it
does not face any issues with structure retention. Moreover,
the edits obtained by the SemanticStyleGAN aren’t as lo-
calized as ours. Editing a region using SemanticStyleGAN
affects multiple other regions as well. We produce more no-
ticeable edits as well.

Conclusion
In conclusion, this work presents a framework for perform-
ing structure-preserving, localized, and photorealistic style
edits on face images, which agree with the global style
scheme of the input image. The presented method does
not require any additional human supervision post train-
ing and also does away with the need for a computation-
ally expensive iterative-optimization-based latent-inversion
process. Performing localized style edits in the presence of
occlusions over ROIs is a challenging test scenario for our
method. Our method may be used for interesting applica-
tions in AR/VR (digital humans) and medicine (dermatol-
ogy). However, it might find few potentially harmful appli-
cations in much the same manner as deepfakes and the likes.
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Appendix
A. Qualitative Comparisons

Method Input Hair Nose Skin Lips + Mouth Eyes
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Ours
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Figure 6: A comparative analysis of our qualitative results for Localized Style Editing (Texture Manipulation), with respect to
SemanticStyleGAN (Shi et al. 2022). Our method is better at preserving the input image structure. Moreover, it performs more
localized and pronounced edits.


